Jumat, 29 Maret 2019

Pembahasan Soal Barisan dan Deret



Barisan dan Deret

1.      USM STAN 2009
27, 64, 18, 48, 12, 36, .....
a.      8, 27
b.      8, 25
c.       6, 27
d.      6, 25
Penyelesaian  :
Suku ganjil, dibagi 3 kemudian dikali 2
(12 : 3 x 2 = 8)
Suku genap, dibagi 4 kemudian dikali 3
(36 : 4 x 3 = 27)

Jawaban          :
A.      8, 27

2.      UN 2004/2005
Suatu jenis bakteri, setiap detik akan membelah diri menjadi dua. Jika pada saat permulaan ada 5 bakteri, waktu yang diperlukan bakteri supaya menjadi 320 adalah .....
a.      5 detik
b.      6 detik
c.       7 detik
d.      16 detik
e.      20 detik
Penyelesaian  :
Deret geometri
r = 2 dan a = 5
Un = arⁿ
320 = 5. 2ⁿ  => 64 = 2ⁿ
                        2⁶ = 2ⁿ  => jadi n=6 detik

Jawaban          :
B.      6 detik

3.      UN 2005/2006
Sebuah bola jatuh dari ketinggian 10 m dan memantul kembali dengan ketinggian ¾ kali tinggi sebelumnya, begitu seterusnya hingga bola berhenti.
Jumlah seluruh lintasan bola adalah .....
a.      65 m
b.      70 m
c.       75 m
d.      77 m
e.      80 m
Penyelesaian  :
Deret geometri  a = 10 m, r = ¾
Lintasan bola bolak balik kecuali saat jatuh pertama => maka jumlah seluruh lintasannya ialah :
S = 2. Sn-a
   = 2. () – a
   = 2. () – 10
   = 70 m
           
            Jawaban          :
B.  70 m

  1. UN 2006/2007
Suku ke-5 sebuah deret aritmatika adalah 11 dan jumlah nilai suku ke-8 dengan suku ke-12 sama dengan 52.
Jumlah 8 suku pertama deret tersebut ialah …..
a. 68
b. 72
c. 76
d. 80
e. 84

Penyelesaian  :
·         U₈ + U₁₂ = 52
(a+7b)+(a+11b) = 52
             2a+18b = 52
               1a+9b =26………………(1) 
·         U₅ = a + 4b =11……………………..(2)
ð  1a + 9b = 26
ð  1a + 4b = 11  -
        5b = 15  => b = 3

1a + 4b = 11  à  1a + 4.3 = 11  à a = -1
Maka :             Sn =  (2a + (n-1)b)
                        S₈  = 4 (2(-1)+(8-1)3) = 4 (-2+21) = 76

Jawaban          :
C.      76

  1. USM STIS 2005/2006
Jika tiga bilangan q,s, dan t membentuk barisan geometri, maka = …..
a.                           c.
b.                           d.

Penyelesaian  :
Un = a. r ,    q, s, t à geometri
s    = qr
t    = qr= sr
r   =
è  =  =  =
 =  =  =  =
Jawaban          :
B.  

  1. USM STIS 2007/2008
Jumlah tak hingga dari deret geometri adalah 81 dan suku pertamanya adalah 27.
Jumlah semua suku bernomor genap deret tersebut adalah …..
a.      32                 c. 18
b.      21                 d. 12

Penyelesaian  :
Deret geometri bernomor genap adalah :
ar, ar³, ar⁵, …..
            S~ =  =
                 =  = 32

Jawaban          :
A.      32

  1. USM STIS 2005/2006
Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768.
Suku ke-7 deret itu adalah …..
a.      36
b.      72
c.       192
d.      256

Penyelesaian  :
            a = 3
            U₉ = 768
            Un = ar
            U₉ = 3r⁸ = 768
                      r⁸ = 256
                      r  = 2
            U₇ = 3. 2⁶ = 3. 64 = 192

            Jawaban          :
C. 192

8.    SNMPTN Matematika Dasar REGIONAL I tahun 2009/2010
Pada suatu ulangan matematika, terdapat soal mengenai jumlah barisan aritmatika. Pada berkas soal yang diterima Adam, rumus tidak tercetak sempurna sehingga hanya terbaca “ Sn = n² + ”, tetapi Adam masih bias menjawab soal tentang beda barisan tersebut.
Nilainya adalah …..
a.      1
b.      -1
c.       2
d.      -2
e.      3

Penyelesaian  :
Missal Sn = n² + an
Maka
U₁ = S₁ = 1 + a
U₂ = S₂ - S₁ = (4+2a) – (1+a)
     = 3+a
Jadi beda = U₂ - U₁
                            = 3 + a – (1+a)
                            = 2

Jawaban          :
C. 2

9.    SNMPTN Matematika Dasar REGIONAL III tahun 2009/2010
Jumlah 101 bilangan genap berurutan adalah 13130 jumlah bilangan terkecil yang pertama dari bilangan-bilangan genap tersebut adalah …..
a.      96
b.      102
c.       108
d.      114
e.      120

Penyelesaian  :
Deret aritmatika :
n = 101                        b = 2                Sn = 13130
maka :
Sn        = (2a+(n-1)b)
13130  = (2a+100.2)
130      = a+100
a          = 30

jadi 3 bilangan terkecil = 30 +32 + 34
                                                  = 96

Jawaban          :
A.      96

10. SNMPTN Mata Ujian Matematika IPA Regional I tahun 2009/2010
Misalkan Un menyatakan suku ke-n suatu barisan geometri. Jika diketahui U₅ = 12 dan log U₄ + log U₅ - log U₆ = log 3, maka nilai U₄ adalah …..
a.      12
b.      10
c.       8
d.      6
e.      4

Penyelesaian  :
Un = suku ke-n  suatu barisan geometri
Log U₄ + log U₅ - log U₆ = log 3, maka :
Log ar³ + log ar⁴ - log ar⁵ = log 3
ó log = log 3
ó ar² = 3
Diketahui U₅ = 12 ó ar⁴ =12, sehingga
ar².r² = 12 ó 3r² = 12 ó r² = 4
sehingga r = 2
diperoleh U₄ = = = 6

Jawaban          :
d. 6

11.  SNMPTN Mata Ujian Matematika IPA Regional II tahun 2009/2010
       Misalkan Un menyatakan suku ke-n suatu barisan geometri. Jika diketahui U₆=64 dan log U₂+log U₃+log U₄=9 log 2, maka nilai U₃ adalah …..
a.      8
b.      6
c.       4
d.      2
e.      1

Penyelesaian  :
Un = suku ke-n suatu barisan geometri
Log U₂ + log U₃ + log U₄ = 9 log 2, maka
Log ar + log ar² + log ar³ = 9 log 2
ó log a³r⁶ = log 2⁹
ó a³r⁶ = 2⁹ ó (ar²)³ = (2³)³
Sehingga ar² = 2³ = 8 atau U₃ = 8

Jawaban          :
A.      8

12.  SNMPTN Mata Ujian Matematika IPA Regional II tahun 2009/2010
       Koefisien xpada hasil perkalian (x-1)(x-2)(x-3)….(x-50) adalah …..
a.      -49
b.      -50
c.       -1250
d.      -1275
e.      -1350

Penyelesaian  :
(x-1)(x-2)(x-3)….(x-50)
Untuk n=1, koefisien x⁰ adalah -1
Untuk n=2, koefisien x adalah -3
Untuk n=3, koefisien x² adalah -6
Untuk n=4, koefisien x³ adalah -10
 .
 .
 .
Untuk n=50, koefisien x adalah
   -1    -3    -6    -10 …..
       -2     -3    -4 …..
           -1     -1
a= -1
b= -2
c=-1
Un= a + +
Un= -1 ++
     = -n+1+ ½ (-n²+3n-2)
     = -1/2 n(n+1)
Jadi koefisien x⁴⁹ terjadi pada n= 50
Sehingga U₅₀ = -1/2. 50(51)= -1275

Jawaban          :
d. -1275

13.  Matematika IPA UM UGM tahun 2009/2010
       Sebuah deret dengan suku ke-n adalah an memiliki jumlah suku pertama 5n² + 3n.
       Nilai a₂ + a₅ + a₈ + ….. + a₂₀ = ….
a.      726
b.      736
c.       746
d.      756
e.      766

Penyelesaian  :
Sn = 5n² + 3n
Un = 10 n-2, maka :
a₂ + a₅ + a₈ + ….. + a₂₀
= 18 + 48 + 78 + ….. + 198
=(18+198)
=756

Jawaban          :
d. 756

14.  Matematika IPA UM UGM tahun 2008/2009
Suku ke-n deret geometri adalah Un. Jika diketahui = 3 dan U₂.U₈ = , maka nilai U₁₀ = …..
a.     
b.     
c.      
d.     
e.     

Penyelesaian  :
Deret geometri, diketahui :
= 3 ó =3 ó r =
U₂ . U₈ = ó U₅ =  ó a = 3
U₁₀ = ar⁹ = 3()⁹ = 3(=

Jawaban          :
a.     

15.  Matematika IPA UM UGM tahun 2008/2009
Dari suatu deret aritmatika dengan suku ke-n adalah Un, diketahui U₃ + U₆ + U₉ + U₁₂ = 72. Jumlah 14 suku pertama deret ini adalah …..
a.      231
b.      238
c.       245
d.      252
e.      259

Penyelesaian  :
Deret aritmatika diketahui :
U₃ + U₆ + U₉ + U₁₂ = 72 ó U₆ + U₉ = 36
S₁₄ = 7. 36 = 252

Jawaban          :
d. 252

16. Matematika IPA UM UGM tahun 2007/2008
Suatu barisan geometri mempunyai rasio positif. Jika suku ke-3 bernilai 2p dan suku ke-2 dikurangi suku ke-4 sama dengan pmaka rasio barisan tersebut adalah …..
a.
b. 2
c.
d. 2
e.

Penyelesaian  :
Deret geometri
Jika : U₃ = 2p dan U₂ - U₄ = p
                        ar² = 2p dan ar-ar³ = p
maka :  =
                        =
                        2 – 2r² =
                        2r² + -2 = 0
                        (2r -
                        r =  atau r =  
                        jadi r =

Jawaban          :
c.

17. Matematika IPA UM UGM tahun 2007/2008
Tiga buah bilangan membentuk barisan geometri idan jumlahnya -48. Jika bilangan ke-2 dan ke-3 ditukar letaknya menghasilkan sebuah barisan aritmatika, maka nilai bilangan ke-2 dari barisan semula ialah …..
a.      -32
b.      -28
c.       28
d.      32
e.      36

Penyelesaian  :
ð  a + ar + ar² = - 48
a(1 + r + r²) = -48, dan
ð  a + ar + ar² = DA
ar² - a = ar - ar²
r² - 1 = r – r²
(r – 1)(r + 1) = r (1 – r)
r + 1 = -1
r = - ó a (1 -  + ) = -48
a = -64
            U₂ = ar
                 = (-64)(-)
                 = 32

            Jawaban          :
            d. 32

18. Matematika IPA UM UGM tahun 2007/2008
Jika dalam suatu deret berlaku ³log x + ³log² x + ³log³ x + …… = 1, maka nilai x adalah …..
a.
b.
c.
d.
e.

Penyelesaian  :
D ~ = ³log x + ³log² x + ³log³ x + …… = 1
S ~ = = 1
                        = 1
                        ³log x = 1 - ³log x
                        2. ³log x = 1
                        ³ log x = ½
                        X =

Jawaban          :
c.  

19.  Matematika IPA UM UGM tahun 2006/2007
Diketahui deret aritmatika dengan beda 1. Jika jumlah pangkat tiga dri tiga suku pertamanya adalah 18 lebih besar dari 3 kali pangkat 3 dari suku ke-2 maka jumlah tiga suku pertamanya adalah …..
a.      6
b.      9
c.       12
d.      15
e.      18

Penyelesaian  :
Deret aritmatika
b = 1
U₁³ + U₂³ + U₃³ = 18 + 3 U₂³
U₁³ - 2 U₂³ + U₃³ = 18
a³ - 2 (a+ 1)³ + (a+ 2)³ = 18
a = 2
U₁ + U₂ + U₃ = 2 + 3 + 4 = 9

            Jawaban          :
b.      9

20.  Matematika IPA UM UGM tahun 2006/2007
Suku ke-5 dari barisan geometri adalah 243, hasil bagi suku ke-9 dengan ke-6 adalah 27. Suku ke-2 adalah …..
a.      3
b.      5
c.       7
d.      9
e.      11

Penyelesaian  :
Deret geometri
U₅ = 243 = ar⁴
= r³ = 27
ó r = 3 ó a = 3
Jadi U₂ = ar = 3 . 3 = 9

Jawaban          :
d. 9

21. Matematika Dasar UM UGM tahun 2005/2006
Suku pertama dari deret geometri adalah 4 dan jumlah 8 suku pertamanya 17 kali jumlah 4 suku pertama. Rasio deret geometri itu sama dengan …..
a.      5
b.      4
c.       3
d.      2
e.      1

Penyelesaian  :
Deret Geometri
a = 4
S₈ = 17 . S₄
a= 17 . a
= 17
r⁴ + 1 = 17 ó r⁴ = 16 ó r = 2

Jawaban          :
d. 2

22.  SPMB 2004
       Suku pertama dan ke-2 dari suatu deret geometri berturut-turut ialah p⁴ dan p³.
       Jika suku ketujuh adalah p³⁴, maka nilai x adalah …..
a.      1
b.      2
c.       3
d.      4
e.      5

Penyelesaian  :
r = = = p
U₇ = ar⁶ = p⁴(p)⁶
p³⁴ = p⁴. p= p
34 = 18x – 20
18x = 54 ó x = = 3

Jawaban          :
c.       3

23. SPMB 2004
Suku ke-2 dari suatu deret aritmatika adalah 5. Jika jumlah dari suku ke-4 dan suku ke-6 dari deret terrsebut adalah 28, maka suku ke-9 adalah …..
a.      19
b.      21
c.       26
d.      28
e.      29

Penyelesaian  :
U₂ = a + b = 5
U₄ + U₆ = a + 3b + a + 5b = 28
2a + 8b = 28
a + 4b = 14
a + b   =   5    -
      3b = 9 ó b = 3
a + 3 = 5 ó a = 2
U₉ = a + (9 – 1)b = a + 8b
     = 2 + 8(3) = 26

Jawaban          :
c. 26

24.  SPMB 2004 / IPA
Diketahui suatu deret geometri tak hingga dengan suku awal a dan rasio r. jika jumlah suku awal dan rasio sama dengan 6 dan jumlah semua suku-sukunya sama dengan 5, maka adalah …..
a.      -20
b.      25
c.      
d.      -
e.      -25

Penyelesaian  :
a + r = 6 ó a = 6 – r
 = 5
a = 5 – 5r
6 – r = 5 – 5r
4r = -1 ó r = -
a= 6 –(-) = 6
= = - 25
Jawaban          :
            e. -25

25.  SPMB 2005
Suku tengah suatu deret aritmatika adalah 23. Jika suku terakhirnya 43 dan suku ketiganya 13, maka banyaknya suku pada deret tersebut adalah …..
       a. 5
       b. 7
       c. 9
       d. 11
       e. 13
      
       Penyelesaian  :
       2 U = U₁ + Un
2 (23) = a + 43
            46 = a + 43 ó a = 3
U₃ = a + 2b = 13 ó b = 5
Un = a + (n - 1)b = 43
3 + (n – 1) 5 = 43
5n – 5 = 40
5n = 45 ó n = 9

Jawaban          :
c. 9

26.  SPMB 2005
Agar deret geometri tak hingga dengan suku pertama a mempunyai jumlah 2, maka a memenuhi …..
       a. -2 < a < 2
       b. -4 < a < 0
       c. 0 < a < 2
       d. 0 < a < 4
       e. -4 < a < 4
      
       Penyelesaian  :
       S∞ = = 2
= 2 ó a = 2 – 2r
-1 < a < 1
r = 1 ó a = 0
r = -1 ó a = 4
maka 0 < a < 4

Jawaban          :
d.      0 < a < 4

27.  UAN 2005
Diketahui suku ketiga dan suku kelima dari deret aritmatika berturut-turut adalah 18 dan 24. Jumlah tujuh suku pertamanya adalah …..
a.      117
b.      120
c.       137
d.      147
e.      160

Penyelesaian  :
a + 2b = 18
a + 4b = 24   -
     -2b = -6
b = 3 ó a = 12
S₇ = (2(12) + (7-1)3)
    = 147

Jawaban          :
d. 147

28.  Matematika Dasar UM UGM tahun 2009/2010
       Dalam suatu deret aritmatika, jika U₃ + U₇ = 56 dan U₆ + U₁₀ = 86, maka suku ke-2 adalah …..
a.      8
b.      10
c.       12
d.      13
e.      15


Penyelesaian  :
Deret aritmatika
U₃ + U₇ = 56     ó U₅ = = 28
U₆ + U₁₀ = 86   ó U₈ = = 43
U₈ - U₅ = 43 – 28 ó 3b = 15 ó b = 5
b = 5 ó Un = 5n + 3 (karena U₅ = 28)
U₂ = 10 + 3 = 13

Jawaban          :
            d. 13

29.  Matematika Dasar UM UGM tahun 2009/2010
Jika suatu barisan geometri y + 1, 2y – 2, 7y – 1, ….. mempunyai rasio positif, maka suku ke-4 barisan tersebut adalah …..
a.      108
b.     
c.       -
d.      -108
e.      -324

       Penyelesaian  :
       y + 1, 2y – 2, 7y – 1, ….. ó barisan Geometri dengan r > 0
       (2y – 2)² = (y + 1)(7y – 1); r =
       4y² - 8y + 4 = 7y² + 6y -1
       3y² + 14y – 5 = 0
       (3y – 1) (y + 5) = 0
       y =    ó r =  > 0 (tidak dipakai)
y = - 5  ó r = = = 3
U₁ = y + 1 = -5 + 1 = -4
U₄ = ar³ = -4 . 3³ = -108


       Jawaban          :
       d. -108

30. Matematika Dasar UM UGM tahun 2008/2009
Suatu deret aritmatika memiliki beda 2 dan jumlah 20 suku pertamanya 240. Jumlah tujuh suku pertamanya adalah …..
a.      -5
b.      -6
c.       -7
d.      -8
e.      -9

       Penyelesaian  :
       Deret aritmatika, b = 2 dan S₂₀ = 240 maka
       (2a + 19b) = 240 ó 2a + 19.2 = 24
       ó a = -7, S₇ = (2. -7 + 6.2) = -7

       Jawaban          :
c.       -7


                

KISI-KISI SAS MTK TL

Nama Guru                         : Mira Agustina, S.Pd Mata Pelajaran                  : Matematika Tingkat lanjut Materi                 ...